第461章 高性能气膜冷却,突破涡轮前温度

常浩南当即摇头:

“现在总体设计层面已经基本把结构确定为2-8-1-1结构或者3-7-1-1结构,这样每一级留出来的余量都很小,6%到8%那几乎要再多加一级高压,肯定不行。”

“但是我们这边对于冷却空气流量的需求确实大了很多,如果不增加的话……”

气膜冷却可以说是航空发动机研发史上具有里程碑意义的技术,不过利用气体进行主动冷却也不是没有代价的,这些用作冷却的气体无法被用于推进,相当于损失掉了相当一部分压气机功率。

因此,尽管理论上只需要提高冷却气体的用量就可以实现更好的效果,但在实际航发设计中,还是要考虑到气体损失率的问题。

如果一个燃烧室内壁就要消耗掉至少6%的话,那再算上冷却压力更大的涡轮……

还玩个锤子。

压气机累死累活送进来的空气,你直接放跑将近五分之一,或许对于涡桨和涡轴这种输出轴功率的发动机来说还可以接受,但对于涡扇发动机来说,基本就是废了。

而如果再加一级高压,那就要变成3-8-1-1,跟眼下的al31f根本拉不开差距。

al31f的性能当然是够用的,但潜力就不行了。

毕竟是70年代末的设计。

“你们燃烧室出口温度设定的上限是多少?”

涡扇10的涡轮前温度(也就是燃烧室出口温度)设定在1200-1250c,这是常浩南亲自做出的决定,但冷却系统肯定要留一定余量,留多少就是殷永泽他们的工作了。

“留5%余量,1325c。”

这个余量当然是按照开氏温度计算的。

紧接着殷永泽又补充了一句:

“这个冷却要求实在太高,我们只能用槽缝冷却代替涡喷14上的圆孔冷却,气流量的需求就上来了。”

这下常浩南终于知道问题出在哪了;

“别用槽缝冷却,我下一步计划就是研究涡轮部分的高效率成型孔冷却方案,用异形孔代替圆孔,理论上可以实现跟开缝冷却接近的效果,用气量还不会增加,你们先继续按照1325c算其它结构,具体的冷却方案,等我把异形孔的多孔介质模型开发出来再定。”

尽管燃烧室出口的温度毫无疑问是整个发动机最高的部分,但最终把高能气体的能量转化为机械功还是需要依靠涡轮,后者不仅工作环境高温高压,甚至还需要高速旋转并承受外部过载,因此对于材料和冷却技术的要求反而更高。

如果一个冷却技术能用在涡轮上面,那么搬到燃烧室侧壁一般问题不大。

(本章完)